Coordination Compounds and

Complexation

Assist.Prof.Dr. Mohammed Hassan
Lecture 4

- metal complex: A central metal atom bonded to a group of molecules or ions
- If the complex bears a charge, it is a complex ion.
- coordination compounds: Compounds containing complexes.
- The molecules or ions coordinating to the metal are the ligands.
- They are usually anions or polar molecules.

Metal-Ligand Bond

- This bond is formed between a Lewis acid and a Lewis base.
$>$ The ligands (Lewis bases) have nonbonding electrons.
$>$ The metal (Lewis acid) has empty orbitals.

Oxidation Numbers or Complex charge

Complex charge $=$ sum of charges on the metal and the ligands

Neutral charge of coordination compound = sum of charges on metal, ligands, and counterbalancing ions

$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$

$$
+2 \quad 6(0) \quad 2(-1)
$$

neutral compound

Electron Configuration Exceptions

Electrons are removed from 4s orbital before they are taken out of $3 d$
Energies of $3 d / 4 s$ orbitals are not as close together in ions of transition metals as in neutral atoms In ions of transition elements, $3 d$ orbitals are lower in energy than $4 s$ orbitals
Therefore, electrons most easily lost are those in outermost principal energy level, the ns
Additional electrons may then be lost from $(n-1) d$
orbital

Complex Ions

Ligands

Definitions:

Coordination compound

Complex ion and counter ions Are neutral Complextion
Central transition metal with attached ligands Has net charge (+/-) -
Complex is set off in brackets that isolate it from the rest of compound
lons outside brackets-free (uncomplexed) ions -
Metal cation-central atom Counter ions
Anions/cations needed to balance charge so it has no net charge

Ligand (complexing agent) •

Neutral molecule or anion w/lone pair that can be used to form bond to central metal ion (Mono)Unidentate ligand •
Can form one bond to metal ion -
One donor atom present and can occupy only one site in coordination sphere
Even if more than one pair of electrons available, if • donation of one pair does not allow for proper positions to make additional bonds, other pairs don't bond Halide ions, SCN- (thiocyanate ions), anions of weak acids $\mathrm{H}_{2} \mathrm{O}, \mathrm{CN}^{-}, \mathrm{NH}_{3}, \mathrm{NO}^{2-}, \mathrm{SCN}^{-}, \mathrm{OH}^{-}, \mathrm{X}^{-}$
(halide ions), $\mathrm{CO}, \mathrm{O}^{2}$

Bidentate ligand

2 donor atoms present and can occupy 2 or more coordination sites (2 bonds to metal ion)
Most common (diamines/anions of diprotic organic acids)

Ethylenediamine (en)
Oxalate ion (ox), $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$

ethylenediamine

oxalate ion

Donor Atoms

$$
\mathrm{H}_{2} \mathrm{~N}^{\prime-\mathrm{CH}_{2}-\mathrm{CH}_{2}} \underset{\sim}{2} \mathrm{NH}_{2}
$$

ortho-phenanthroline

oxalate ion

ethylenediamine

polydentate ligands-chelating ligands

Can form more than two bonds to metal ion. Appear to grasp metal between 2 or more donor atoms, called chelating agents (Greek "claw")

- example: ethylenediaminetetraacetate ion (edta ${ }^{4}$

Extra stable because two bonds must be broken to separate metal from ligand Excellent chelating ligand Has 6 pairs of electrons to donate Molecule flexible enough to allow each of 6 pairs to form • bonds with metal ion
Important for chemical analysis of metal ions using simple titration methods, found in many cosmetics, drugs, foods as preservative by forming complexes with metal ions, acts as catalysts to promote oxidation

EDTA

EDTA

Ligands in Coordination Compounds

Table 23.7 Some Common Ligands in Coordination Compounds Ligand
 Type Examples

Unidentate $\mathrm{H}_{\mathbf{2}} \mathrm{O}$: water $\quad: \ddot{\mathrm{F}}:-$ fluoride ion $\left.: \mathrm{C} \equiv \mathrm{N}:\right]^{-} \quad$ cyanide ion $[: O \ddot{O}-\mathrm{H}]$ hydroxide ion

Bidentate

ethylenediamine (en) oxalate ion

Polydentate

diethylenetriamine

triphosphate ion

ethylenediaminetetraacetate
(EDTA) ion

Coordination number: •

$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}-5 \mathrm{~N}$ atoms and 1 Cl atom serve as donor atoms for Co

Number of donor atoms surrounding central metal atom-coordination number of the metal

Above, there are 6 donor atoms, so Co has a coordination number of 6
Coordination number of a metal is equal to this rule,

Number of bonds formed by metal ions to ligands in complex ions varies from 2-8 depending on size, charge, electron configuration of transition metal ion

Many metal ions have more than one -
2 ligands give linear structure, 4-tetrahedral or square planar, 6-octahedral
Typical Coordination \#s for some common metal ions

M^{3+} Coor. \#s	M^{2+}	Coor. \#s	M^{+}		Coor. \#s
6	Sc^{3+}	4,6	2,4	Mn^{2+}	Cu^{+}
6	Cr^{3+}	6	Fe^{2+}	2	Ag^{+}
6	Co^{3+}	4,6	Co^{2+}	2,4	Au^{+}
4	Au^{3+}	4,6	Ni^{2+}		
		4,6	Cu^{2+}		
	4,6	Zn^{2+}			

Examples

$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$ and $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Complex ion is shown enclosed in brackets -
In the silver compound, Cl^{-}is a free chloride ion, and in the iron compound each K^{+}is a free potassium ion
K^{+}and Cl^{-}ions are examples of counter ions which serve to balance or neutralize the charge of the complex ion
Coordination number of Pt^{2+} in $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is 4 , and that of Co^{2+} in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is 6.

Common ligands

Polar molecules: \square
$\mathrm{H}_{2} \mathrm{O}$
NH_{3}
CO
NO
Aquo -
Ammine -
Carbonyl -
Nitrosyl

Neutral Molecules: \square

Methylamine
Ethylenediamine (en)
Anions: \square
$\mathrm{F} / \mathrm{Cl}^{-} / \mathrm{Br}^{-} / \mathrm{ll}^{-}$ CN^{-}
OH^{-}
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
$\mathrm{CO}_{3}{ }^{2-}$ $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$

Fluoro-/chloro-/bromo-/iodo-
Cyano
Hydroxo
Thiosulfato
Carbonato
Oxalato

Naming complex ions

Ligands named before central metal atom
Anionic ligands names end in " 0 " chloride \rightarrow chloro \quad ide \rightarrow o sulfate \rightarrow sulfato ate \rightarrow ato -
Neutral ligands named as molecule except $\mathrm{H}_{2} \mathrm{O} \rightarrow$ aquo $/ \mathrm{NH}_{3} \rightarrow$ ammine/CO \rightarrow carbonyl \# ligands in complex use Greek prefixes •
di for 2 /tri for 3 /tetra for $4 /$ penta for $5 /$ hex for $6-$ Prefixes bis-, tris-, tetrakis-, etc. used when other are already used

Name of cationic complex ion ends in name of central metal ion w/oxidation state shown as Roman numeral in () at end of metal's name Name of anionic complex ion ends in "ate," sometimes Latin name used chromium (II) \rightarrow chromate(II) nickel(II) \rightarrow nickelate(II) platinum(II) \rightarrow platinate(II) Iron(II) \rightarrow ferrate(II) Copper(I) \rightarrow cuprate(I) Lead(II) \rightarrow plumbate(II) -
silver=argentate Gold(I) \rightarrow aurate(I) Tin(IV) \rightarrow stannate(IV) -

Name complex ion w/formula $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$

Anionic ligands have names ending in 'o' \square
CN- named as cyano
\# ligands in complex specified using Greek prefix \square

$$
6 \text { ligands }=\text { hexa } \rightarrow \text { hexacyano }
$$

Oxidation state of central metal atom shown w/Roman numeral
in parantheses at end of metal's name
Central metal ion is iron
Charge on iron: $3-=x+(6 \times 1-)$

$$
\begin{gathered}
3-=x-6 \\
x=3+
\end{gathered}
$$

Central metal ion: iron (III)
Complex ion is anion, therefore name will end in ferrate (III)
Ligands named before central metal ion: \square hexacyanoferrate (III)

Formula	Ligand Name	No. of Ligands and prefix	Central Ion Name	Complex Ion Name
$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$	ammine	$2 \rightarrow$ di	$\begin{gathered} \text { silver (I) } \\ (+1=x+2(0), x=+1) \end{gathered}$	diamminesilver (I) ion (complex is a cation)
$\mathrm{Ag}(\mathrm{CN})_{2}$	cyano	$2 \rightarrow$ di	$\begin{gathered} \text { silver }(1) \rightarrow \text { argentate (I) } \\ (-1=x+2(-1), x=+1) \end{gathered}$	dicyanoargentate (I) ion (complex is an anion)
$\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	aquo	$6 \rightarrow$ hexa	$\begin{gathered} \text { copper (II) } \\ (+2=x+6(0), x=+2) \end{gathered}$	hexaaquocopper (II) ion (complex is a cation)
$\mathrm{CuCl}_{4}{ }^{2-}$	chloro	$4 \rightarrow$ tetra	$\begin{gathered} \text { copper (II) } \rightarrow \text { cuprate (II) } \\ (-2=x+4(-1), x=+2) \end{gathered}$	tetrachlorocuprate (II) ion (complex is an anion)

Writing Formula of a Complex

Identify central metal ion . 1 Identify charge on central metal ion in () . 2 Identify ligands . 3 Identify \# ligands . 4

Calculate total chare on ligands . 5
Calculate charge on complex ion . 6
Charge on metal ion + total charge on ligands -
Ligands written first, then central metal ion . 7
When more than one type of ligand present, . 8 name alphabetically (prefixes don't affect order)

Write formula for complex ion tetraamminecopper (II)

Identify central metal ion : copper, $\mathrm{Cu} \square$ Identify charge on central metal ion in (): $2+\square$ Identify ligands: ammine $=\mathrm{NH}_{3}$ (neutral species) \square

Identify \# ligands: tetra $=4 \square$
Calculate total charge on ligands $=4 \times 0=0$ 回
Calculate charge on complex ion = charge on \square metal ion + total charge on ligands $=2++0=2+$

Write formula giving central metal ion first \square followed by ligands: $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$

Central Ion
Formula

No. of

Ligands

Complex Ion Formula
Co^{2+}
(charge in parentheses)

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O} \\
\text { (aquo } \left.=\mathrm{H}_{2} \mathrm{O}\right)
\end{gathered} \text { hexa }=6 \quad \begin{gathered}
\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+} \\
(4 \times 0+2=+2)
\end{gathered}
$$

| tetrachlorocobaltate (II) | Co^{2+}
 (charge in | Cl^{-}
 parentheses) |
| :---: | :---: | :---: | | (chloro $\left.=\mathrm{Cl}^{-}\right)$ |
| :---: |\quad tetra $=4 \quad$| CoCl_{4}^{2-} |
| :---: |
| $($ ate $=$ anion $)$ |$(4 \times-1+2=-2)$

| tetracarbonylnickel (II)
 ion | Ni^{2+}
 (charge in
 parentheses) | CO
 (carbonyl $=\mathrm{CO})$ |
| :---: | :---: | :---: | tetra $=4 \quad$| $\mathrm{Ni}(\mathrm{CO})_{4}{ }^{2+}$ |
| :---: |
| $(4 \times 0+2=+2)$ |

tetracyanonickelate (II) ion (ate $=$ anion)
Ni^{2+}
(charge in parentheses)

$$
\begin{array}{ccc}
\mathrm{CN}^{-} & \text {Ni(CN })_{4}{ }^{2-} \\
\left(\text { cyano }=\mathrm{CN}^{-}\right) & \text {tetra }=4 & (4 \times-1+2=-2)
\end{array}
$$

$\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$

Name cation-potassium •
Name anion-potassium tetracyano
Oxidation state of central atom-potassium tetracyanonickelate(II)

$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}_{2}$

Name ligands first in alphabetical orderdiamminebis(ethylenediamine)
Name central atom w/oxidation number- • diamminebis(ethylenediamine)cobalt(II)

Name aniondiamminebis(ethylenediamine)cobalt(II)chlori de
$\left[\mathrm{COI}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$ pentaammineiodocobalt(III) chloride
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ tetraamminecopper(II) sulfate $\left[\mathrm{CrCl}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{2}$ aquachlorobis(ethylenediamine)chromium(III) chloride
$\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{CdCl}_{4}\right]$ ammonium tetrachlorocadmate(II) $\mathrm{Na}[\mathrm{Rh}(E D T A)]$ sodium ethylenediaminetetraacetatorhodate(III)

$$
\left[\mathrm{Pd}(\mathrm{en})_{2}\right]\left[\mathrm{CrCl}_{4}\left(\mathrm{NH}_{3}\right)_{2}\right]
$$

bis(ethylenediamine)palladium(II)diamminetetrachlorochrom ate(III)
$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{ox})(\mathrm{ONO})_{4}\right] \quad$ • potassium tetranitritooxalatoferrate(III)

$$
\left.\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}
$$

diamminesilver(I)

$$
\left[\mathrm{RuCl} 5\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}
$$

aquapentachlororuthenate(III)
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
hexacyanoferrate(II)

$$
\mathrm{Na}_{4}\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]
$$

sodium tris(oxalato)nickelate(II)
$\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{CuBr}_{4}\right]$
ammonium tetrabromocuprate(II)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2}$ pentaamminechlorocobalt(III) nitrate $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Il}_{3}$ hexaaquacobalt(III) iodide $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$
potassium tetrachloroplatinate(II)

Potassium hexafluorocobaltate (III) \square
$\mathrm{K}_{3}\left[\mathrm{CoF}_{6}\right]$ -
tetraamminechloronitrocobalt(III) chloride \square
$\left.[\mathrm{CoClNO})_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl} \square$ tris(ethylenediamine)nickel(II) sulfate \square $\left[\mathrm{Ni}(\mathrm{en})_{3}\right] \mathrm{SO}_{4}$ 回
tetramminedichloroplatinum(IV) tetrachloroplatinate(II) \square
$\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right] \square$
tris(ethylenediamine)cobalt(II) nitrate \square
$\left[\mathrm{Co}(\mathrm{en})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ 回 cobalt(II) hexanitrocobaltate(III) ■
$\mathrm{Co}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]_{2} \quad \square$
ammineaquadicarbonyldicyanoiron(III) \square
$\left[\mathrm{Fe}(\mathrm{CN})_{2}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{CO})_{2}\right]^{+}$■

Sodium tetracyanoosmium(III)
$\mathrm{Na}\left[\mathrm{Os}(\mathrm{CN})_{4}\right]$
Tris(ethylenediamine)nickel(II) tetraoxomanganate(II)

$$
\left[\mathrm{Ni}(\mathrm{en})_{3}\right]_{3}\left[\mathrm{MnO}_{4}\right]
$$

Hexaamminezinc(II) tris(oxalato)chromate(III)
$\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]_{3}\left[\mathrm{Cr}(\mathrm{ox})_{3}\right]_{2}$ tris(oxalato)vanadate(II) $\left[\mathrm{V}(\mathrm{ox})_{3}\right]^{4-}$ sodium dihydroxodinitritomercurate(II)
$\mathrm{Na}_{2}\left[\mathrm{Hg}(\mathrm{OH})_{2}(\mathrm{ONO})_{2}\right]$ ammonium tetrabromoaurate(II) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{AuBr}_{4}\right]$ Potassium ethylenediaminetetraacetatoferrate(II) K_{2} [Fe (EDTA)] diaquabis(ethylenediamine)iridium(III) chloride

$$
\left[\operatorname{lr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}_{3}
$$

In complexation reactions, Lewis bases

have many names

Ligands, complexing agents, chelates, sequestering agents

Most ligands have one pair of electrons to donate (ammonia)
Some have two pairs of elections and some \square up to six pairs
Ligands that provide more than one electron pair in forming a complex must be large, flexible molecules so that each pair of electrons can be oriented properly to form a bond

Complexation reactions can be written generally as

$\mathrm{M}^{\mathrm{n+}}+\mathrm{xL}{ }^{\mathrm{m}-} \leftrightharpoons \mathrm{ML}_{x}^{\mathrm{n}-\mathrm{mx}}$ where $\mathrm{M}^{\mathrm{n+}}$ is a metal ion with a charge of +n and L^{m} is a liquid with a charge of -m
Ag tends to accept two electron pairs Cu accepts four electron pairs -
Other metal ions tend to accept six electron pairs in complexes
This information allows us to accurately write most complexation reactions once the number of electron pairs that a ligand can donate has been determined

Shapes (Geometry) of Some Complex Ions

Coordination number = \# ligands $=2 \rightarrow$ linear
Coordination number $=$ \# ligands $=4 \rightarrow$ tetrahedral or square-planar Coordination number $=$ \# ligands $=6 \rightarrow$ octahedral (octahedral geometry is most common for transition metal complexes)

Complex Ion

EDTA calcium disodium: use for treatment heavy metal poisoning Such as lead which form water soluble complex that excreted From kidney

- $2 \mathrm{Na}+$

Dimercaprol is indicated as a chelating agent in arsenic, gold, and mercury

Penicillamine is cabaple of forming complex with heavy metal Such as copper,iron ,mercury ,lead ,gold.

4. Deferoxamine
A. Structure

Complex

b. Uses
iron $\left(\mathrm{Fe}^{3+}\right)$ poisoning IM or slow IV. It has also been used orally to chelate iron poisc
c. Toxicity

1. skin rash
2. histamine release with reduced blood pressure (shock)
3. cataracts

complexes as anticancer agents

cisplatin, cis-diamminedichloroplatinum(II)

Copper N -(2-hydroxyacetophenone) glycinate
Induces reactive oxygen species (ROS) generation.
ROS have multiple functions and are implicated in tumor initiation and progression as well as in induction of apoptosis of various cancer cells, drug resistant cancers.

copper salicylaldoxime

Inhibits topoisomerase II catalytic activity.

